WJPPS Citation

Login

Search

News & Updation

  • Updated Version
  • WJPPS introducing updated version of OSTS (online submission and tracking system), which have dedicated control panel for both author and reviewer. Using this control panel author can submit manuscript
  • Call for Paper
    • WJPPS  Invited to submit your valuable manuscripts for Coming Issue.
  • Journal web site support Internet Explorer, Google Chrome, Mozilla Firefox, Opera, Saffari for easy download of article without any trouble.
  •  
  • New Impact Factor
  • WJPPS Impact Factor has been Increased to 8.025 for Year 2024.

  • ICV
  • WJPPS Rank with Index Copernicus Value 84.65 due to high reputation at International Level

  • Scope Indexed
  • WJPPS is indexed in Scope Database based on the recommendation of the Content Selection Committee (CSC).

  • WJPPS: APRIL ISSUE PUBLISHED
  • April Issue has been successfully launched on 1 April 2024.

Abstract

PREPARATION AND EVALUATION OF SOLID LIPID NANOPARTICLES BASED NANOGEL FOR DERMAL DELIVERY OF MELOXICAM

Pramod Kumar Biswal*, Anupam Singh Bhadouriya and Kaushikee Singh

ABSTRACT

The aim of the current investigation was to prepare and investigate the potential of solid lipid nanoparticles based gel (SLN-gel) for the dermal delivery of meloxicam (MLX). The meloxicam loaded SLN (MLX-SLN) gel was developed and characterized by means of photon correlation spectroscopy, rheome- try, and differential scanning calorimetry to determine the physicochemical properties. The behavior of SLN gel on rat skin was evaluated in vitro using Franz diffusion cells to determine the skin permeation and penetration characteristics, in vivo on mice to determine the skin tolerance by histopathological examinations. The anti-inflammatory potential of SLN gel was assessed by carrageenan induced rat paw edema test. Biophysical studies including differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) were undertaken to study the interaction between the SLN gel and skin. MLX-SLN gel with nanometric particle size exhibited the controlled release abilities and simultaneously the potential to transport the drug to various skin layers. SLN gel displayed viscoelastic properties with predominantly elastic behavior and exhibited plastic flow. Biophysical studies elucidated the interaction between the SLN gel and stratum corneum (SC) lipids, and proposed the lipid bilayer fluidization as the possible mechanism for the increased penetration of meloxicam into skin. The nano-gel system showed marked anti-inflammatory activity and excellent skin tolerability. It can be concluded that SLN gel may be a promising delivery system for MLX in the treatment of inflammatory disorders.

Keywords: Solid lipid nanoparticles, Meloxicam, Skin penetration, Controlled release, Sustained release, Carrageenan induced paw edema model.


[Download Article]     [Download Certifiate]

Call for Paper

World Journal of Pharmacy and Pharmaceutical Sciences (WJPPS)
Read More

Online Submission

World Journal of Pharmacy and Pharmaceutical Sciences (WJPPS)
Read More

Email & SMS Alert

World Journal of Pharmacy and Pharmaceutical Sciences (WJPPS)
Read More