ANIMAL MODELS OF HYPERTENSION, DIABETES AND DIABETIC HYPERTENSTION: AN OVERVIEW

*GB Jadhav¹, RB Saudagar¹ and CD Upasani²

¹Department of Pharmacology, KCT’s R.G.Sapkal College of Pharmacy, Anjaneri, Nashik, Maharashtra, India, 422 213.
²Department of Pharmacology, SSDJ College of Pharmacy, Chandwad, Nashik, Maharashtra, India.

ABSTRACT
Hypertension is the most common cardiovascular disease and is a major public health issue in developed as well as developing countries. Changes in human behavior and lifestyle over the last century have resulted in dramatic increase in the incidence of diabetes worldwide. Hypertension is twice as prevalent in people with diabetes as in the general population. Both hypertension and diabetes are independent risk factors for micro vascular and macrovascular disease. There is need to search new techniques for evaluation of efficacy of new drugs on diabetic hypertension. The objective of the present review was to study various animal models of experimental induced diabetic hypertension in animals. Though there are some research papers and reviews available on the animal models of diabetic hypertension, the aim of this review, however, is highlight on overview on the currently available animal models of diabetic hypertension with respect to their origin/source, characteristic, advantages, and disadvantages in human. Further, it especially deals with the appropriate selection and usefulness of different animal models in testing various classes of new chemical entities (NCEs) and other therapeutic modalities for the treatment of diabetic hypertension.

Keyword: Animal models, Diabetes, hypertension, DOCA, STZ.

INTRODUCTION
Hypertension is the most common cardiovascular disease and is a major public health issue in developed as well as developing countries. In more than 95% of cases specific underlying
cause of hypertension is remain unknown, such patients are said to have essential hypertension. Changes in human behavior and lifestyle over the last century have resulted in dramatic increase in the incidence of diabetes worldwide \cite{2}. The number of adults with diabetes in the world will rise from 135 million in 1995 to 300 million in 2025. Hyperglycemia and hyperlipidemia are important risk factors in the development of cardiovascular disease and metabolic disorders.\cite{6}

It is estimated that 30\% of the adult population may have arterial hypertension and that 30-60\% of diabetic patients have associated hypertension \cite{8}. Hypertension is twice as prevalent in people with diabetes as in the general population. Both hypertension and diabetes are independent risk factors for micro vascular and macrovascular disease. Some of the factors which are thought to contribute to the genesis of hypertension in the diabetic patients are insulin resistance, hyperinsulinemia, kallikrein kinin system, rennin angiotensin aldosterone system and the sympathetic system\cite{9}. There is a need to increase awareness of these facts among all health professionals involved in the care of hypertension and diabetes in developing countries, as well as health policy makers of these countries. Efforts at cost reduction should have the family as its focus as the largest share of costs is being borne by patients and their families and relieving the family of this financial burden needs to be prioritized. The Diabetes Control and Complications Trial (DCCT) and United Kingdom Prospective Diabetes Study (UKPDS) have shown that strict control of hyperglycaemia reduces the incidence of diabetic micro-vascular disease\cite{10}. The economic and social costs of hypertension and diabetes are enormous, both for health care services and through loss of productivity. In developed countries, 10\% or more of the total health budget is spent on the management of hypertension, diabetes and its complications. Generally, current therapeutic strategies for type 2 diabetes are limited and involve insulin and four main classes of oral antidiabetic agents that stimulate pancreatic insulin secretion (sulphonylureas and rapid-acting secretagogues/insulinotropics \textit{e.g.}, glibenclamide, glipizide, rapaglinide), reduce hepatic glucose production (biguanides \textit{e.g.}, metformin), delay digestion and absorption of intestinal carbohydrate (a-glucosidase inhibitors \textit{e.g.}, acarbose) or improve insulin action [thiazolidinediones (TZDs) \textit{e.g.}, pioglitazone, rosiglitazone]. Number of serious adverse effects. Thus, there are wide variety of newer therapeutic agents/strategies being examined for the treatment of type 2 diabetes, most of all currently under preclinical and early clinical stages of drug development.
Though there are some research papers and reviews available on the animal models of diabetic hypertension. The aim of this review, however, is highlight on overview on the currently available animal models of diabetic hypertension with respect to their origin/source, characteristic, advantages, and disadvantages in in human. Further, it especially deals with the appropriate selection and usefulness of different animal models in testing various classes of new chemical entities (NCEs) and other therapeutic modalities for the treatment of diabetic hypertension.

**ANIMAL MODELS OF DIABETIC HYPERTENSION** \(^3, 4\)

Hypertension and DM are common chronic condition, which frequently coexist and can significantly affect individual health care needs \(^{12}\). Hypertension and diabetes mellitus are known to occur simultaneously frequently \(^{13}\). Streptozotocin diabetic rats have long been used in laboratory to study the effects of antihypertensive agents on cardiac complications, hypertension and dyslipidaemia \(^{15}\). It has been reported that the antihypertensive agents prevent STZ induced hypertension in diabetic rat. Vasodilators like hydralazine, angiotensin converting enzyme inhibitors like enalapril and calcium channel blockers like nifedipine have been shown to prevent STZ induced cardiomyopathy, cardiac dysfunction and hyperlipidaemias \(^{16}\). It is also reported that STZ diabetic DOCA hypertensive rats may be a useful model for the clinical conditions in humans in which diabetes mellitus, hypertension and atherosclerosis can occur simultaneously \(^{17}\). Sevak and Goyal (1996) were studied the effect of chronic treatment with lisinopril on cardiovascular complications in STZ induced diabetes and DOCA induced hypertension in rats. Blood sampling by orbital puncture is a controversial technique. The puncture of the orbital venous plexus is often performed in tailless animals, e.g. hamsters. This technique is also used in rats and mice, when larger volumes are required which cannot be obtained from the tail vein \(^{18}\).

**Antihypertensive Effect of Herbal Medicine**

Numerous drugs from plants have also been used in the treatment of hypertension. The extract from root of *Solanum sisymbriifolium* (Solanaceae) produced a significant decrease in BP in anaesthetized hypertensive (adrenal regeneration hypertension + DOCA) rats \(^{19}\). Vasorelaxant and antihypertensive effect of *Cocos nucifera* Linn. endocarp was studied on isolated rat thoracic aorta and DOCA salt induced hypertensive rats. Aqueous extract of the calyx of *Hibiscus sabdariffa* significantly exhibit antihypertensive effect on experimentally induced hypertension in laboratory animals \(^{21}\).
The antihypertensive effect of a methanol extract of seeds of *Trigonella Fonenum-greacum* and its methanol fraction was studied in DOCA-salt-induced and fructose-induced hypertensive rats and exhibits a significant antihypertensive effect. Several herbal medicines were used for determining antihypertensive activity. The antihypertensive effects of the flavonoids extracted from *Spergularia purpurea* were studied both in normotensive rat (NTR) and spontaneously hypertensive rats (SHR) [22]. Antihypertensive effects of treatment with the aqueous extract of *Croton schiedeanus* was investigated in anaesthetized SHR [23]. *Bidens pilosa* extract was able to prevent the establishment of hypertension and lower elevated blood pressure levels. The extract also reduced the highly elevated plasma insulin levels provoked by the high fructose diet. These results suggest that the leaf methanol extract of *Bidens pilosa* exerts its antihypertensive effect in partly by improving insulin sensitivity [24]. Tetrandrine an alkaloid isolated from the Chinese herb Radix of *Stephaniae tetrandrae* was not only an anti-hypertensive drug but also an excellent drug to reverse cardiac and vascular remodeling [25]. Treatment with Abana a polyherbal formulation (PHF) reduced the BP of unilaterally nephrectomized (UNF) DOCA salt-treated hypertensive rats [26].

**ANIMAL MODELS OF HYPERTENSION**

**Mineralocorticoid Induced Hypertension (Endocrine Hypertension)**

Mineralocorticoid-induced hypertension is thought to be due to the sodium retaining properties of the steroid causing increases in plasma and extracellular volume. The hypertensive effect is increased by salt loading and unilateral nephrectomy in rats [27]. DOCA is an agent commonly used to induce hypertension in experimental animals [28]. Hypertension induced by DOCA is due to retention of Na and water [29]. was the first to demonstrate that DOCA produces hypertension in rats. There is increased DOCA-induced reabsorption of salt and water leading to increased blood volume and hence increased BP. There is also increased secretion of vasopressin leading to water retention and vasoconstriction. In addition, altered activity of Renin angiotensin- aldosterone system (RAAS) leads to increased sympathetic activity. Rats, especially female and young, are prone to DOCA-salt induced hypertension [29]. This type of hypertension can also be produced in dogs and pigs. Other mineralocorticoids (e.g., aldosterone) and glucocorticoids can also produce this type of hypertension [29]. DOCA induced hypertension is salt dependent since neither administration of DOCA nor partial removal of renal mass is effective in increasing BP when applied without salt administration [30]. To produce hypertension, rats weighing about 100 g are kept on a diet high in sodium chloride and drinking water is replaced by 2% sodium chloride solution.
After they attain a weight of about 250 g, they are given DOCA dissolved in sesame seed oil at a dose of 10 mg/kg, twice weekly for 43 days\cite{33}. In another method, UNF is performed followed by DOCA administration\cite{32} can be produced by the following methods: All operated rats receive an injection of ampicillin (10 mg/kg, i.m.) daily for 5 days and local application of Neosporin-H to prevent infection. A week later, DOCA (25 mg/kg/wk, s.c. for 5 wk) dissolved in cottonseed oil, is injected into nephrectomised rats. Alternatively, nephrectomised rats could receive DOCA from silicon rubber implants (200 mg/rat) implanted subcutaneously. NaCl (1.0%) solution is substituted for drinking water and given ad libitum\cite{33}.

**Fructose Induced Hypertension**

Insulin resistance and hyperinsulinemia are two metabolic defects that have been demonstrated to be frequently associated with both clinical and experimental hypertension\cite{34}. Increases in dietary carbohydrate intake can raise blood pressure in experimental animals. The increased intake of either sucrose or glucose was shown to enhance the development of either spontaneous hypertension or salt hypertension in rats\cite{36}. investigated the fructose-Induced Insulin resistance and hypertension in rats. The results indicate that metabolic changes associated with fructose-induced hypertension are unlikely to be secondary to an increase in sympathetic activity. \cite{39} investigated the antihypertensive effects of *Dorstenia psilurus* extract in fructose-fed hyperinsulinemic, hypertensive rats. The results suggest that, *Dorstenia psilurus* treatment could prevent and reverse high blood pressure induced by a diet rich in fructose probably by improvement of plasma insulin levels\cite{40}. studied the concentration and duration-dependence of fructose-induced hypertension in rats. Insulin resistance has been documented in several models of experimental hypertension, including the fructose hypertensive rat\cite{41}. Rodents fed sucrose or fructose-enriched diets can develop hypertension that is also related to insulin resistance and hyperinsulinemia\cite{43}. The fructose hypertensive rat model represents an acquired form of systolic hypertension, where in feeding normal wistar rats a fructose-enriched diet results in hyperinsulinemia, insulin resistance, hypertrygliceridemia and consequently hypertension\cite{44}. If these metabolic abnormalities were responsible for the development of hypertension, then drug interventions that combat or moderate these defects may also decrease high blood pressure.
Cadmium Induced Hypertension
Cadmium has been reported to be a possible risk factor of hypertension in experimental studies\(^{[45]}\). It has been shown that cadmium produced hypertensive effect in rats following repeated exposure to cadmium (1 mg/kg, i.p; 5 days) caused hypertensive response in anesthetized rats. The specific mechanism responsible for cadmium produced hypertension has several hypothesis including an increase of Na retention, interaction with Ca channels, activation of sympathetic nervous system. It is also reported that sub chronic exposure to cadmium via drinking water for 3 months increased systolic blood pressure \(^{[46]}\). Cadmium affects the heart and blood vessels causing cardiovascular disease such as hypertension and atherosclerosis\(^{[47]}\).

Antidiabetic Effect of Herbal Medicine
There are many reports on the antidiabetic properties of plant compounds. Antidiabetic and antioxidant activity of some herbal medicinal plant *Swietenia mahagoni*, *Cynodon dactylon*, *Tectona grandis*, *Rumex patientia* were studied in Streptozotocin induced diabetic rats\(^{[49]}\). Due to the enormous costs of modern treatment of diabetes in developing countries, the use of medicinal plants has substantially increased as an alternative for the control and prevention of diabetes complications. According to the World Health Organization (WHO) there are more than 1200 plant species used world wild in the treatment of diabetes mellitus and substantial number of plant showed effective hypoglycemic activity after laboratory testing\(^{[56]}\). *Pterocarpus santalinus* showed a maximal blood glucose lowering effect in diabetic rats\(^{[59]}\). *Trigonella foenum-graecum* (Fenugreek) (Leguminosae) is employed as an herbal medicine for its antidiabetic effects\(^{[60]}\). *Tinospora cordifolia* is widely used in Indian ayurvedic medicine for treating diabetes mellitus\(^{[60]}\). Ethanolic extract prepared from the seed of *Vernonia anthelmintica* was evaluated for its antihyperglycemic activity in STZ induced diabetic rats\(^{[61]}\). tested the antihyperglycemic and antioxidant effect of *Berberis aristata* in alloxan induced diabetic rats. Hypoglycemic medicinal plants (known and less known) have been selected for thorough studies from indigenous folk medicines, Ayurvedic, Unani and Siddha systems of medicines. In all the experiments with different herbal samples (vacuum dried 95% ethanolic extracts), definite blood glucose lowering effect within 2 weeks has been confirmed in alloxan diabetic albino rats. Blood glucose values are brought down close to normal fasting level using herbal samples at a dose of 250 mg/kg once, twice or thrice daily, as needed.
ANIMAL MODELS OF DIABETES MELLITUS

Diabetes can be induced by pharmacological, surgical or genetic manipulations in several animal species. Chemically induced models of diabetes are common in elucidating the possible role of environmental factors involved in the endocrine pancreatic destructive processes and subsequent development of diabetes. Rats are used for screening as well as for quantitative evaluation of blood glucose lowering agents. Diabetes mellitus (DM) is a syndrome of impaired carbohydrate, fat, and protein metabolism caused by either lack of insulin secretion or decreased sensitivity of the tissues to insulin. Diabetogenesis in experimental animals is achieved by the chemical agents, who have been reported to exert an immediate toxic effect on the β-cells of the islets of Langerhans, which is followed by chronic not necessarily life-long diabetic state. These substances have also been referred to as β-cytotoxic substances or simply β-cytotoxins with the implication that the actions are restricted to the β-cells of the islets of Langerhans.

Streptozotocin Induced Diabetes

Experimental diabetes induced by streptozotocin has been used extensively to study the relationship between diabetes and autonomic cardiovascular dysfunction. Streptozotocin (60 mg/kg) has been extensively used as diabetogenic drug. STZ destroys pancreatic β-cells resulting in a diabetic syndrome in animals similar to that seen in human type I diabetes characterized by hyperglycemia, hypoinsulinemia, glucosuria and loss in body weight. Streptozotocin and Alloxan are toxic glucose analogues that preferentially accumulate in pancreatic β-cells via the GLUT2 glucose transporter and causes alkylation of DNA. DNA damage induces activation of poly ADP-ribosylation, a process that is more important for the diabetogenicity of streptozotocin than DNA damage itself. Poly ADP-ribosylation leads to depletion of cellular NAD+ and ATP. Enhanced ATP dephosphorylation after streptozotocin treatment supplies a substrate for xanthine oxidase resulting in the formation of superoxide radicals. Consequently, hydrogen peroxide and hydroxyl radicals are also generated. Furthermore, streptozotocin liberates toxic amounts of nitric oxide that inhibits aconitase activity and participates in DNA damage. As a result of the streptozotocin action, β-cells undergo the destruction by necrosis. Streptozotocin, which was reported to be diabetogenic, appears to be comparable to alloxan with regard to islet β-cell specificity. Rakieten et al., (1963) reported the diabetogenic activity of the antibiotic streptozotocin. The compound turned out to be specifically cytotoxic to β-cells of the pancreas. Streptozotocin induces diabetes in the rat, dog, hamster, monkey, mouse, and Guinea pig. In the rat the
intravenous LD50 was estimated to be about 140 mg/kg. A single intravenous injection of 50 mg/kg was reported to yield 100% diabetes. Because of low stability of STZ the rapid intravenous injection appears to be the only dependable route of administration. The biological half-life of STZ was estimated to be about 5 min in mice. Streptozotocin diabetes in rat was described as a specific form of hyperglycemia with virtually no ketosis or elevations of plasma free fatty acids. The specificity of the streptozotocin with regard to the effect on the β-cell is striking and has been claimed to be greater than that of alloxan.

Alloxan Induced Diabetes

Alloxan monohydrate (150 mg/kg) has been extensively used as diabetogenic drug. Alloxan has two distinct pathological effects: it selectively inhibits glucose-induced insulin secretion through specific inhibition of glucokinase, the glucose sensor of the beta cell, and it causes a state of insulin-dependent diabetes through its ability to induce ROS formation, resulting in the selective necrosis of β-cell. However alloxan diabetes has been produced after intravenous, intramuscular, intraperitoneal, subcutaneous, oral, enteral and intrapulmonary administration. In the normal nonfasted animals the blood glucose level fluctuates after a diabetogenic dose of alloxan in a characteristic way usually reported to be triphasic. The phases are: 1) an early, marked hyperglycemia of short duration (about 1 to 4 hr); 2) a more or less severe hypoglycemia lasting up to 48 hr and often resulting in convulsions and death, which may be prevented by treatment with glucose; 3) a chronic hyperglycemia of long, but not necessarily for life long duration, representing the alloxan diabetes. The triphasic pattern of blood glucose level fluctuations observed after diabetogenic doses of alloxan is also seen after Streptozotocin. The effect of STZ and alloxan has recently been compared under the same laboratory conditions in fed mice. It appeared that the initial hyperglycemia following STZ had a characteristic delay in onset of about 45-60 min. this delay was not observed in fasted mice but is also evident from experiments in rats. Hypoglycemia was more severe with STZ than with alloxan, and accordingly fatal convulsions were more frequent in the former group of mice.

Fructose Induced Diabetes

Dietary fructose is a monosaccharide which can induce metabolic disorder including insulin resistance, hyperinsulinemia, hypertension and dyslipidemia which is of pathophysiological importance for the development of diabetes and atherosclerosis. Type 2 diabetic models by simply feeding high fat feed to nonobese; non diabetic mouse was initially developed in
Japan. It is characterized by marked obesity, hyperinsulinaemia, insulin resistance and glucose intolerance. These mice are demonstrated to develop peripheral leptin resistance. Fructose feeding was also found to cause insulin resistance, hyperinsulinemia, and hypertriglyceridemia in normal rats. Cardiovascular dysfunction is associated with obesity and metabolic disorders which occur when animals are fed a high fructose or fat diet. A diet high in fructose may lead to insulin resistance, obesity hypertension and lipid abnormalities symptoms associated with type 2 diabetes [75].

CONCLUSION
The models discussed in this review are useful platforms on which basic science is translated into clinical medicine. One must remember that hypertension and diabetes may have the same phenotype in many patients, but their etiology and clinical course may differ significantly. Currently, the antihypertensive and antidiabetic drugs in use for long term therapy are found to be either decrease in responsiveness or associated with various toxicities owing to which the development process in drug discovery has shifted its focus to natural plant sources having minimal side effects. Any of the animal models described apparently share similar characteristic features of diabetes and hypertension and have allowed experimentation that would be impossible in humans. In the screening programme of cardiovascular compounds, it is particularly important to note that some animal models are better suited to screen particular class of antihypertensive and antidiabetic compounds. Further, the selection of particular animal model is particularly depending on the investigator’s choice whether to use inbred or outbred, availability of particular strain, aim of scientific strategy, type of drug being sought, institutional financial and facility sources in the diabetic hypertension research and pharmaceutical drug discovery and development programme. Animal studies have focused on several mechanisms involved in hypertension/diabetes that remain to be translated into clinical medicine, including hypoxia, oxidative stress, and advanced glycation. Several target molecules have been identified that need to be incorporated into a treatment modality. The challenge continues to be the identification and interpretation of the clinical evidence from the animal models and their application to human treatment.

REFERENCES:


