PHYTOCHEMICAL ANALYSIS, IN VITRO ANTIFUNGAL ACTIVITY AND MODE OF ACTION OF ETHANOLIC EXTRACT OF MARCHANTIA LINEARIS LEHM & LINDB. A BRYOPHYTE

Murugan, K. * and Remya Krishnan

*Plant Biochemistry and Molecular Biology Laboratory, Department of Botany, University College, Thiruvananthapuram, Kerala, 695 034, India.

ABSTRACT

Bryophytes have been used traditionally for treating various skin disorders and injuries. They possess a pool of bioactive compounds with pharmacological activity. But this group was poorly documented in screening phytochemicals compared to flowering plants. Therefore, the present investigation was undertaken to evaluate the in vitro antifungal activities of ethanolic extract of Marchantia linearis Lehm & Lindemb. and their mode of action. Hot continuous soxhlet extraction, RP-HPLC and HPLC-PAD, antifungal analysis by disc diffusion, microdilution assay, electron microscopy and isolation and assay of β-glucosidase, pectin lyase and protease. Screening the phenols and flavonoids, revealed the presence of phenolic acids such as vanillate, gallate, coumarate, cinnamate, ferulate, para catechol, sinapate, hydroxybenzoate, chlorogenate and the flavonoids such as quercetin, luteolin and apigenin. Ethanolic extract exerted a potent fungicidal activity against Candida albicans, Botrytis cinerea, Colletotrichum capsici, Fusarium oxysporum, Fusarium solani, Phytophthora capsici, Rhizoctonia solani and Sclerotinia sclerotiorum providing varied levels of growth inhibition with different concentrations. Minimum inhibitory concentrations and minimum fungicidal concentrations showed varied response against the pathogen tested. Scanning and transmission electron microscopy examinations visualized changes like alteration in hyphal morphology and cell structure suggesting the fungistatic nature of the extract. Significant inhibition on the growth...
of the tested fungi and their hydrolytic enzymes, β-glucosidase, pectin lyase and protease suggest the multisite mechanism of action. The antifungal effects of the studied plant extract recommend them as potent candidate for the in vivo biological control.

Keywords: Antifungal activity, Hydrolytic enzymes, Marchantia linearis, Phytochemical, Scanning electron microscopy, Transmission electron microscopy.

INTRODUCTION

World Health Organization stated that the infectious diseases remain the second leading causes of death worldwide. Plants harbour an inexhaustible source of active ingredients invaluable in the management of many intractable diseases from time immemorial [1]. India possesses a historical track record of significant global contribution by virtue of its traditional knowledge and genetic resources of medicinal plants [2]. Several plants have been used in folklore medicine. The rational design of novel drugs from traditional medicine offers new prospects in modern healthcare. Pathogenic fungi are one of the main infectious agents and are indirectly responsible for allergic or toxic disorders among plants and animals [3]. Fungal infections and its mycotoxins or allergens remain a significant cause of morbidity and mortality despite advances in medicine and the emergence of new antifungal agents. Opportunistic infections of fungal etymology are part of the emerging infectious diseases and are becoming an increasing proportion, especially in the context of synthetic antibiotics abuse [4].

Bryophytes have been used traditionally employed for treating various skin disorders and injuries. Liverworts contain cellular oil bodies which are composed of lipophilic terpenoids and aromatic compounds. Recently from bryophytes, a pool of bioactive compounds is isolated and characterized with their pharmacological activity [5]. The biological activities of bryophytes are due to lipophilic monosesqui and diterpenoids, aromatic compounds (bibenzyls, bis-bibenzyls, benzoates, cinnamates, long-chain alkyl phenols, naphthalenes, phthalides and isocoumarins) and acetogenins [6]. Marchantia species had been used as herbal medicine in ancient China. Many bioactive components, particularly the conjugated polyphenols, have been isolated from many Marchantia species. Humulane-type sesquiterpenes and bis(bibenzyl) are isolated and characterized from Marchantia emarginata [5]. The tribes of Wayanad Kurichya, Kattunaikkans use Marchantia linearis for curing skin borne allergies [2]. Therefore, the present investigation was undertaken to evaluate the in
vitro antifungal activities of ethanolic extract of *Marchantia linearis* Lehm & Lindenb. and their mode of action.

MATERIAL AND METHODS

Plant material

Fresh thallus of *Marchantia linearis* was collected from Kallar river floor of Ponmudi hills, Kerala, India. Taxonomic identity was confirmed by comparing with authenticated herbarium specimen at Department of Botany Herbaria, University of Calicut, Kerala. A voucher specimen of the plant is kept in the herbarium of the institute.

Preparation of extracts

Fresh thallus (100 g) was chopped and successively extracted with 300 ml of hexane, ethyl acetate, ethanol and water for 6 h by hot continuation extraction using Soxhlet apparatus. The supernatants were concentrated using rotavapour at 50°C. The yields of the extract were hexane (0.451 g), ethyl acetate (1.4 g), ethanol (8.5 g) and water (5.2 g). The ethanolic and water residues were lyophilized and stored at −20°C.

Phytochemical screening

The different solvent extracts were initially subjected to qualitative analysis for secondary metabolites such as tannins, saponins, flavonoids, alkaloids, terpenoids and glycosides in accordance with Katasani [7] and Chen et al. [8] with little modification.

Total phenols assay

Total phenols was determined using Folin Ciocalteu reagent at 765 nm and expressed in terms of gallic acid equivalent (mg/g of dry mass) [9].

Reverse Phase High Performance Liquid Chromatography (RP-HPLC) of phenols

Phenolic components of the extract were further fractionated following the method of Noumi et al. [10] with appropriate standard phenolic acids. Phenolic acids in the sample were identified by comparing with the retention time of the standards.

Quantification of total flavonoids by Reverse Phase High Performance Liquid Chromatography (RP-HPLC) PAD

Flavonoids such as quercetin, (Q) luteolin (L), apigenin (A) were quantified by a PAD following RP-HPLC separation at 254.5 nm for Q, 345 nm for L and A. The chromatographic
peaks of the analytes were confirmed by comparing their retention times and UV spectra with those of the reference standards. Quantification was carried out by the integration of the peak using external standard method.

Test fungal samples
Fungi like *Candida albicans, Botrytis cinerea, Colletotrichum capsici, Fusarium oxysporum, Fusarium solani, Phytophthora capsici, Rhizoctonia solani* and *Sclerotinia sclerotiorum* were identified and procured from Institute of Microbial Technology (IMTECH-CSIR), Chandigarh, India.

Antimicrobial assay
Microdilution method was used to determine the minimum inhibitory concentration (MIC) and minimum killing concentration (MKC) of the crude ethanolic extract\[11\]. Fluconazole was used as positive controls.

Spore Germination and growth Kinetics Assay
The ethanolic extract (2 µl) was dissolved in 5% DMSO to obtain 31.25, 62.5, 125, 250, 500 and 1,000 µg/ml concentrations of the extract, where the final concentration of DMSO was 0.5%\[12\]. *Candida albicans, Botrytis cinerea, P.capsi, F.oxysporum* fungal pathogens appeared to be more sensitive fungi compared to others to the extract in the spore germination assay were chosen for kinetic study and evaluation of antifungal activity of the extract.

Electron microscopy
Transmission (TEM) and scanning electron microscopy (SEM) was employed to analyze the mycelia treated with ethanolic extract and was compared with the untreated control.

Isolation and assay of β-glucosidase, pectin lyase and protease
β-glucosidase activity was assayed by using cellobiose as a substrate according to the method of Del Pozo et al.\[13\]. Pectin lyase activity was evaluated by the method of Al-Ajlani\[14\]. Protease activity was determined according to Raut\[15\].

Statistical analysis
The data was statistically evaluated by one way ANOVA and t-test. The results are average of 6 replications and are represented as mean ± SD.
RESULTS

Phytochemical analysis

Phytochemicals screened from *M. linearis* thallus with various solvents showed the presence of alkaloids, flavonoids, phenols, glycosides and terpenoids (Table 1). Total phenol content (TPC) (11.6 mg/g) and flavonoids (9.8 mg/g) are significant in the ethanolic extract.

Table 1: Preliminary phytochemical analysis of *M. linearis* using various solvents.

<table>
<thead>
<tr>
<th></th>
<th>Hexane</th>
<th>Ethyl acetate</th>
<th>Ethanol</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaloids Dragendorff’s test</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Mayers test</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Flavonoids Alkali test</td>
<td>—</td>
<td>++</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Glycosies Bornbager’s test</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tannins Gelatin test</td>
<td>—</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Saponins Frothing test</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Terpenoids Nollers test</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Anthraquinones Benzene Ammonia Test</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Phenols FeCl₃ test</td>
<td>—</td>
<td>++</td>
<td>+++</td>
<td>++</td>
</tr>
</tbody>
</table>

Fractionation of total phenols

Fractionation of phenols by RP-HPLC in *M. linearis* (Fig. 1) showed the presence of a pool of phenolic acids such as gallate (83.4 µg/g), vanilate (97.8 µg/g), chlorogenate (97 µg/g), cinnamate (98 µg/g), protocatechol (110.9 µg/g), coumarate (2001.3 µg/g), ferulate (23.7 µg/g), sinapic (1530.4 µg/g), caffeate (32.4 µg/g) and hydroxyl benzoate (0.9 µg/g). The retention time of standards and sample was listed in Table 2.
Fig. 1: Fractionation of phenols by RP-HPLC in *M. linearis*

Table 2: Comparison of retention time of standard phenolic acids with ethanolic extract of *M.linearis*

<table>
<thead>
<tr>
<th>Phenolic acids</th>
<th>Retention time (Rt) in min.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>standard</td>
</tr>
<tr>
<td>Gallic acid</td>
<td>2.6</td>
</tr>
<tr>
<td>Vanillic acid</td>
<td>4.5</td>
</tr>
<tr>
<td>Caffeic acid</td>
<td>3.8</td>
</tr>
<tr>
<td>p-HBA</td>
<td>6.4</td>
</tr>
<tr>
<td>Ferulic acid</td>
<td>5.7</td>
</tr>
<tr>
<td>Sinaptic acid</td>
<td>6.2</td>
</tr>
<tr>
<td>ProtoCatechol</td>
<td>3.9</td>
</tr>
<tr>
<td>Coumeric acid</td>
<td>7</td>
</tr>
<tr>
<td>Cinnamic acid</td>
<td>9.89</td>
</tr>
<tr>
<td>Chlorogenic acid</td>
<td>2.9</td>
</tr>
</tbody>
</table>

A gradient consisting of solvent A (2.5:97.5 v/v methanol-double distilled water at pH 3 with acetic acid) and solvent B (50:50 v/v methanol-double distilled water at pH 3 with acetic acid) was applied at a flow rate of 1ml/min. Injection volume of both the standards and the samples was 20 µl.

Quantification of flavonoids

Extraction of flavonoids with 80% ethanol under the frequency of 100 kHz, the temperature of 25°C, the liquid-solid ratio of 10 ml/g and the time of 15 min, repeated thrice give the highest flavonoid yield (Fig. 2).
Fig. 2: HPLC chromatograms using photodiode array detector (PAD) of flavonoids in the ethanolic extract of *M. linearis* (A): Q; (B): L; (C): A. Column: HIQ SIL C$_{18}$ V. Mobile phase: methanol-acetonitrile-acetic acid-phosphoric acid-water (200:100:10:10:200, v/v/v). Flow-rate: 1 ml/min. Photodiode array detector at 254.5 nm for (a), 345 nm for (b).

Good results were obtained with respect to repeatability relative standard deviation (RSD) and recovery (97.27 - 99.68%). The contents of quercetin, luteolin and apigenin in *M. linearis* are 182.5, 464.5, and 297.5 µg/g respectively.

Antimicrobial activity

Antifungal assay exhibited varied degree of growth inhibition against tested fungal species such as *Candida albicans*, *Botrytis cinerea*, *Colletotrichum capsici*, *Fusarium oxysporum*, *Fusarium solani*, *Phytophthora capsici*, *Rhizoctonia solani* and *Sclerotinia sclerotiorum* (Table 3).

Table 3: Antifungal activity of ethanolic and water extracts of M. linearis against pathogenic fungi

<table>
<thead>
<tr>
<th>Pathogens</th>
<th>EE</th>
<th>WE</th>
<th>FLU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIC</td>
<td>MFC</td>
<td>MFC/ MIC</td>
</tr>
<tr>
<td>Candida albicans</td>
<td>250</td>
<td>1000</td>
<td>4</td>
</tr>
<tr>
<td>Botrytis cinerea</td>
<td>125</td>
<td>500</td>
<td>4</td>
</tr>
<tr>
<td>Colletotrichum capsici</td>
<td>1000</td>
<td>2500</td>
<td>2.5</td>
</tr>
<tr>
<td>Fusarium</td>
<td>125</td>
<td>500</td>
<td>4</td>
</tr>
<tr>
<td>Pathogen</td>
<td>Minimal Inhibitory Concentration (µg/ml)</td>
<td>Minimal Fungicidal Concentration (µg/ml)</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Fusarium solani</td>
<td>500</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Phytophthora capsici</td>
<td>250</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Rhizoctonia solani</td>
<td>1000</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Sclerotinia sclerotiorum</td>
<td>1500</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

Ethanolic extract (EE); water extract (WE); fluconazole (FLU) (positive control) Minimum inhibitory concentration (values in µg/ml); Minimum fungicidal concentration (values in µg/ml. Values are given as Mean ± SD (n= 3) and considered to be significantly different at P < 0.05.

The microbicidal effect of the extract was further visualized as inhibition zone by treating the pathogens with methanolic extract and then spreading the cells on agar plates. Among the pathogens tested species of *Candida albicans*, *Botrytis cinerea*, *Fusarium oxysporum* and *Phytophthora capsici* were the most sensitive and *Colletotrichum capsici*, *Fusarium solani*, *Rhizoctonia solani* and *Sclerotinia sclerotiorum* are the resistant species.

Ultra structural changes
Fig. 3 a, b, c & d: SEM micrographs of (a) 12h (b) 24h (c) 36h M. linearis ethanolic extract treated Candida albicans cells.

Scanning electron microscopic (SEM) analysis showed remarkable morphological changes in C. albicans morphology in ethanolic extract treated samples during the treatment hours (12, 24 and 36 h). Initially, cell with invaginations and convolutions (Fig. 3a & b) followed by mucus excretion with cell clumping was observed after 24 h exposure to the extract (Fig. 3c). At higher duration (36 h) cells were degenerated completely and only a few single large colonies were visualized throughout the media (Fig. 3d).

Similarly, the transmission electron microscopy (TEM) of Candida albicans incubated in M.linearis ethanolic extract displayed disintegration of the plasma membrane, disorganized cytoplasm and nuclei and ill defined mitochondria, vesicles and vacuoles appeared in the periphery of the cytoplasm, although the plasma membrane remained intact (Fig. 4 a & b).

Fig. 4 a & b: TEM micrographs of M. linearis Candida albicans cells (a) control (b) ethanolic extract treated
Non-treated *Botrytis cinerea* hyphae displayed smooth surface with uniform width and straightly elongated branches. Meanwhile, ethanolic extract treated hyphal filaments were characterized by irregular branching, swollen tips, distortion, collapse and/or shrinkage with wrinkled rough surfaces (Fig. 5 a & b).

![Fig. 5a & b: (a) Hyphae of *Botrytis cinerea* showing normal filaments with smooth surfaces (control) (b) condensed hyphal branches with a rough, blebbed and wrinkled surface.](image)

Control *B. cinerea* cells possess many mitochondria with normal size and shape, were scattered throughout the cytoplasm (Fig. 6a) but, the cytoplasm of the treated cells showed abnormal vacuolization and degenerated mitochondria (ruptured outer membranes, degeneration of mitochondrial cristae, matrix which showed variation in electron density) in the TEM analysis. Similarly, alteration in the endomembrane system, including release and breaking up of the plasmalemma from the cell wall and partial dissolution of the nuclear envelope and the rough endoplasmic reticulum (Fig. 6b).

![Fig. 6 a & b: (a) TEM micrograph of *B. cinerea* control cells showing many normal mitochondria scattered throughout the cytoplasm (b) ethanolic extract treated - large anomalous vacuole in the cytoplasm, degenerated mitochondria and disrupted cell wall.](image)
Spore germination and growth kinetics

DMSO (0.5%, v/v) as a negative control did not inhibit the spore germination of any of the fungal pathogens tested. 80% inhibition of fungal spore germination was observed for *F. oxysporum*, *B. cinerea* and *P. capsici* at 250-500 µg/ml concentrations of extract. Similarly, ethanolic extract also exhibited a moderate inhibitory effect on the spore germination of *F. solani*, *S. sclerotiorum*, *R. solani* and *C. capsici* in the range of 20 to 60% at concentrations ranging from 500 to 1,000 µg/ml.

The antifungal kinetics of the ethanolic extract against sensitive fungal species spores to different concentrations of the extract for a period of 0 to 150 min caused varying degrees of inhibition of spore germination. A positive correlation was observed between concentration and exposure time with growth kinetics among the fungal spores tested. An increase in fungicidal activity was observed with increase in exposure time and concentration. The extract at 31.25 µg/ml showed antifungal activity but not rapid killing at the exposure time of 120 min. However, there was a remarkable increase in the killing rate at 250 and 500 µg/ml after 30 min of exposure, and 60% to 90% inhibitions of spore germination were observed at 150 min exposure, respectively.

Profile of hydrolytic enzyme

Table 4: The effect of ethanolic extract from *M. linearis* with 3 different concentrations (250, 500, 1000 mg/ml) on the production of β-glucosidase (bg), pectin lyase (pl) and protease (pr) (u/ mg protein) from the selected pathogenic fungi

<table>
<thead>
<tr>
<th></th>
<th>250</th>
<th>500</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BG</td>
<td>PL</td>
<td>PR</td>
</tr>
<tr>
<td>C. albicans</td>
<td>2±0.05</td>
<td>0.7±0.07</td>
<td>0.5±0.03</td>
</tr>
<tr>
<td>B. cinerea</td>
<td>1.7±0.002</td>
<td>0.6±0.03</td>
<td>0.4±0.01</td>
</tr>
<tr>
<td>C. capsici</td>
<td>2.4±0.03</td>
<td>0.8±0.04</td>
<td>0.6±0.03</td>
</tr>
<tr>
<td>F. oxysporum</td>
<td>1.5±0.01</td>
<td>0.5±0.04</td>
<td>0.3±0.02</td>
</tr>
</tbody>
</table>
The effect of the ethanolic extract on the production of major hydrolytic enzymes such as β-glucosidase, pectin lyase and protease from the fungi were analyzed. β-glucosidase were significantly inhibited by the ethanolic extract of *M. linearis* in *C. albicans*, *Botrytis cinerea*, *Fusarium oxysporum*, *Phytophthora capsici* (2 - 0.24 U/ mg protein) at all the tested concentrations (250-1000 µg/ml) compared with control (2.90 U/ mg protein). However, the corresponding activity in *Colletotrichum capsici*, *Fusarium solani*, *Rhizoctonia solani* and *Sclerotinia sclerotiorum* was ranging from 2.4 - 0.8 U/ mg protein i.e., a moderate inhibitory effect (Table 4).

Similarly, pectin lyase from *C. albicans*, *Botrytis cinerea*, *Fusarium oxysporum*, *Phytophthora capsici* was remarkably inhibited at all tested concentrations and moderately inhibited in *Colletotrichum capsici*, *Fusarium solani*, *Rhizoctonia solani* and *Sclerotinia sclerotiorum*. Protease also showed a similar pattern in *C. albicans*, *Botrytis cinerea*, *Fusarium oxysporum*, *Phytophthora capsici* followed by *Colletotrichum capsici*, *Fusarium solani*, *Rhizoctonia solani* and *Sclerotinia sclerotiorum* at all the tested concentrations.

DISCUSSION

In this study, we have demonstrated morphological and ultrastructural changes of selected pathogenic fungi affected by ethanolic extract of *M. linearis* under varying treatment conditions. The results obtained in the present study revealed that the level of the phenolic compounds in the ethanolic extract of the thallus in *M. linearis* were significant ($P < 0.05$). Values of phenolic acids retention time were in agreement with those published by Noumi et al. $^{[10]}$. A positive correlation was observed between the phenolic acids and total phenols in...
the bryophyte suggesting their role as precursor of many of the phytochemicals. Cinnamate, coumarate, gallate, ferulate and hydroxy benzoate has established antioxidant potentiality, which in turn supports the antioxidant significance of the plant. Chlorogenic acid can regenerate oxidized vitamin E via caffeate and it also acts as a pro oxidant in the propagation phase of LDL oxidation. Coumarate is a precursor of flavonoids and also binds with nitric acid and its derivatives before they combine with protein amines to form nitrosamine radical. Similarly cinnamate has antibacterial, antifungal and antiparasitic properties and gallate and its derivatives exhibit higher free radical scavenging properties[16].

Protective effect of the M.linearis extract was comparable to the methanolic extract of the liverwort Plagiochila beddomei[17]. Antimicrobial activity of polyphenolic compounds is likely exerted primarily by its ability to act as a nonionic surface-active agent therefore disrupting the lipid-protein interface or by the denaturation of proteins and inactivation of enzymes in the pathogens. Secondly, phenols alter the permeability of the membrane that could result in the uncoupling of oxidative phosphorylation, inhibition of active transport and loss of metabolites due to membrane damage. Gallic acid has proven anti-fungal and antiviral properties[16].

Treatment with ethanolic extract caused irregular branching in the apical region, loss of linearity, with the appearance of barrel-like structures followed by extrusion of amorphous fibrillar substance with vesicular apical surface. Growth of fungi takes place at the apex of terminal hyphae[18], so the abnormalities observed at this region after treatment suggests the inhibition of fungal growth. The changes in the wall surface indicate an alteration in the normal assembly of the wall components, leading to their incorrect arrangement at the apical dome and to the anomalous lateral exocytosis from the basal hyphae. Anomalous blebbing on the apex, extrusion of material suggests an alteration in the normal control of apical exocytosis of vesicles carrying material for cell wall construction compounds, such as chitin, glucans, and glycoproteins in the apical region of fungi[19]. This leads to incorrect arrangement of the different parietal wall compounds.

The results suggest that the cell membrane is the target of the polyphenols that could interfere with the phospholipid bilayers of membranes, as previously observed by Belay et al. [20] on isolated bacterial cytoplasmic membrane and also in fungal cells by Latha et al.[19]. However, the interaction of the lipophilic compounds with the cytoplasmic membrane also depends on
the presence of water-soluble compounds like terpenoids \[20\]. Thus, phenolic acids or flavonoids induce its fungicidal activity by targeting cell membranes. Since the regulation of the main metabolic systems depends on the integrity of all the cell organelle membranes, it is clear that the presence of compounds which affect cell membranes may interfere with many biological processes; in particular, any alteration of the mitochondrial membrane system can reduce energy turnover inside the cell and can result in premature senescence. Afifi \[21\] reported *Anethum graveolens*, *Cymbopogon citrates* and *Juniperus oxycedrus* extracts against *Fusarium oxysporum*, *Aspergillus niger*, *Alternaria alternate*. So the present results strongly suggest that the hyphal degeneration observed in *B. cinerea* may be due to the phytochemicals in the ethanolic extract of *M. linearis*. Morphological and ultrastructural changes of growing hyphae as well as of constituting hyphal cells affected by *M. linearis* extract under varying treatment conditions suggest that the polyphenols inhibit the cell wall components. Therefore, it is the rational speculation that inhibition by the extract of fungal cell wall can induce abortive cell-wall formation in susceptible fungi. Actually, the primary morphological changes produced by growth-inhibitory concentrations are those associated with the inhibition of normal cell wall formation. One of the most prominent changes was the development of numerous short branches on the lateral walls of hyphae. Although the exact reason remains to be answered, this abnormal hyphal growth might be a fungal response that compensates the inhibited apical growth of hyphae. Similar morphological changes were reported previously by Afifi\[21\] on selected fungal pathogens.

Similarly, antifungal kinetics results using *Cestrum nocturnum* plant extract were also in strong agreement with the findings of Al-Reza et al. \[22\] on *in vitro* and *in vivo* plant pathogens. The present data on the differential rate of inhibition on β-gulcosidase, pectin lyase and protease suggests that the pathogenic fungi possess a specific infection pattern in order to enter the host plant. This is usually performed by the synthesis of a characteristic set of polymer-degrading enzymes such as cellulases and pectin-degrading enzymes to enable successful establishment of the host-pathogen relationship. Most of the compatible pathogens possess multiple forms of these cell wall degrading enzymes \[23\]. The results of the present study related with the inhibitory effect from natural plant extracts against the hydrolytic enzymes was supported by Sofia et al. \[24\] on *Botrytis cinerea* using methanolic and ethanolic fraction of three native Chilean plants (*Ephedrabreana*, *Fabiana imbricata*, and *Nolana sedifolia*). Similarly, Jaroszuk-Scisel and Kurek \[25\] isolated water-soluble
substances from the leaves of rye were shown to inhibit the fungal pectinase and cellulase. Also, Akhgari et al. [26] reported that the bean polygalacturonase-inhibiting protein expressed in transgenic *Brassica napus* inhibits polygalacturonase from its fungal pathogen *Rhizoctonia solani*. Similarly, Pedro et al. [27] reported that the *Carica papaya* leaf extract possess different inhibitory effects against *Phomopsis vexans, Fusarium sp, Rhizoctina solani, Sclerotium rolfsii, Rhizopus stolonifer, Colletotrichum gloeosporioides and Phytophthora capsici* hydrolytic enzymes.

CONCLUSION

In conclusion, the results showed that fungicidal effects of biologically active compounds from *M.linearis* thallus ethanolic extract can be used as good candidates for the in vivo biological control of pathogenic fungi, limiting the abuse of chemical fungicides. The morpho-functional disintegrity of fungal cell components and reduction in the activities of hydrolytic enzymes may be the probable mechanism of action leads to non-viability and poor spore germination capacity. More studies are warranted in the future to test the antifungal activities of the studied plant extracts on other fungi.

REFERENCES

